有助研发新型超导材料
2013年, 一个马普研究所参与的国际研究组发现,当使用红外激光脉冲照射钇钡铜氧化物材料时,它会在室温条件下短暂地显示出超导性。很显然激光脉冲改变了这种材料晶 体结构中双层氧化铜分子的耦合性。然而其中更确切的原因仍然不甚明了——直到研究组有机会前往美国,利用斯坦福大学的直线加速器相干光源(LCLS)——世界上最强大的X射线激光进行分析之后才最终揭开谜底。德国马普研究所物理学家罗曼·曼可威斯基(Roman Mankowsky)是这篇《自然》杂志论文的第一作者。他说:“首先,我们再次向材料照射红外脉冲激光,我们看到其中一些原子开始发生振动。很短时间之后,我们紧接着使用短X射线脉冲来测量被激发的晶体精确的晶格结构。”
这样做得到的结果是发现,红外脉冲不仅仅激发并导致原子振动,实际上还让原子发生了迁移,离开了原先的位置。这就在短时间内造成氧化铜双分子层厚度增加了2个皮米(1皮米=1万亿分之一米),或一个原子直径的百分之一左右,而它们之间中间层的厚度则相应发生减薄。这一变化增强了两个双层之间的耦合效应,从而导致晶体结构在室温下短暂地显示出超导性。
而在另一方面,这项最新研究成果也帮助改进了目前还尚不完善的高温超导体理论。曼 可威斯基表示:“这项成果将帮助材料科学家们研发具有更高临界温度的超导材料。并最终实现可在室温下应用,完全无需冷却的超导材料的梦想。”到目前为止, 超导磁体,马达或电机在应用时都必须使用液氮或液氦进行冷却。如果这种复杂的冷却过程不再需要,这将意味着这一领域的一项关键性技术突破。
上一篇:上一篇:令人惊叹!3D打印技术的十大惊人之作
下一篇:下一篇:出乎意料!盘点受科幻启发的10大发明
据说,每年有成千上万的陨石进入地球大气层,这些陨石,多数在南极被发现。陨石为何大量落到南极来呢,原因之一是因为在贫瘠的白色南极荒野下,更容易发现这些太空岩石,陨石常常都身披暗黑色的外衣。 然而,对一种特殊的陨石——那些富含铁的陨石,至今为止却很...详细>>